Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 89(1): 31-42, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11069006

RESUMO

Because of the high temperature applied in the steam pretreatment of lignocellulosic materials, different types of inhibiting degradation products of saccharides and lignin, such as acetic acid and furfural, are formed. The main objective of the present study was to examine the effect of acetic acid and furfural on the cellulase production of a filamentous fungus Trichoderma reesei RUT C30, which is known to be one of the best cellulase-producing strains. Mandels's mineral medium, supplemented with steam-pretreated willow as the carbon source at a concentration corresponding to 10 g/L of carbohydrate, was used. Four different concentration levels of acetic acid (0-3.0 g/L) and furfural (0-1.2 g/L) were applied alone as well as in certain combinations. Two enzyme activities, cellulase and beta-glucosidase, were measured. The highest cellulase activity obtained after a 7-d incubation was 1.55 FPU/mL with 1.0 g/L of acetic acid and 0.8 g/L of furfural added to the medium. This was 17% higher than that obtained without acetic acid and furfural. Furthermore, the results showed that acetic acid alone did not influence the cellulase activity even at the highest concentration. However, beta-glucosidase activity was increased with increasing acetic acid concentration. Furfural proved to be an inhibiting agent causing a significant decrease in both cellulase and beta-glucosidase production.


Assuntos
Ácido Acético/farmacologia , Celulase/biossíntese , Furaldeído/farmacologia , Trichoderma/enzimologia , Celulase/isolamento & purificação , Celulase/metabolismo , Cromatografia Líquida de Alta Pressão , Cinética , Magnoliopsida/enzimologia , Árvores , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento , beta-Glucosidase/metabolismo
2.
Appl Biochem Biotechnol ; 84-86: 679-91, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10849827

RESUMO

Various techniques are available for the conversion of lignocellulosics to fuel ethanol. During the last decade processes based on enzymatic hydrolysis of cellulose have been investigated more extensively, showing good yield on both hardwood and softwood. The cellulase production of a filamentous fungi, Trichoderma reesei Rut C 30, was examined on carbon sources obtained after steam pretreatment of spruce. These materials were washed fibrous steam-pretreated spruce (SPS), and hemicellulose hydrolysate. The hemicellulose hydrolysate contained, besides water-soluble carbohydrates, lignin and sugar degradation products, which were formed during the pretreatment and proved to be inhibitory to microorganisms. Experiments were performed in a 4-L laboratory fermentor. The hydrolytic capacity of the produced enzyme solutions was compared with two commercially available enzyme preparations, Celluclast and Iogen Cellulase, on SPS, washed SPS, and Solka Floc cellulose powder. There was no significant difference among the different enzymes produced by T. reesei Rut C 30. However, the conversion of cellulose using these enzymes was higher than that obtained with Iogen or Celluclast cellulases using steam-pretreated spruce as substrate.


Assuntos
Celulase/metabolismo , Celulose/metabolismo , Cycadopsida , Trichoderma/enzimologia , Madeira , Celobiose/análise , Celulase/biossíntese , Hidrólise , Cinética , Monossacarídeos/análise , Papel , Vapor , beta-Glucosidase/metabolismo
3.
Appl Biochem Biotechnol ; 70-72: 225-35, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9627384

RESUMO

Hydrolysis of cellulose by Trichoderma cellulases often results in a mixture of glucose, cellobiose, and low-mol-wt cellodextrins. Cellobiose is nonfermentable for most yeasts, and therefore it has to be hydrolyzed to glucose by beta-glucosidase prior to ethanol fermentation. In the present study, the beta-glucosidase production of one Penicillium and three Aspergillus strains, which were previously selected out of 24 strains, was investigated on steam pretreated willow. Both steam-pretreated willow and hemicellulose hydrolysate, released during steam explosion of willow, were used as carbon sources. Reference cultivation runs were performed using prehydrolyzed Solka Floc and glucose. The four strains were compared with Trichoderma reesei regarding sugar consumption and beta-glucosidase production. Aspergillus niger and Aspergillus phoenicis proved to be the best enzyme producers on hemicellulose hydrolysate. The maximum beta-glucosidase activity, 4.60 IU/mL, was obtained when A. phoenicis was cultivated on the mixture of hemicellulose hydrolysate and steam-pretreated willow. The maximum yield of enzyme activity, 502 IU/g total carbohydrate, was obtained when Aspergillus foetidus was cultivated on the hemicellulose hydrolysate.


Assuntos
Aspergillus/metabolismo , Penicillium/metabolismo , beta-Glucosidase/biossíntese , Aspergillus niger/metabolismo , Meios de Cultura , Fermentação , Filtração , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Árvores
4.
Appl Biochem Biotechnol ; 70-72: 225-35, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-18575992

RESUMO

Hydrolysis of cellulose by Trichoderma cellulases often results in a mixture of glucose, cellobiose, and low-mol-wt cellodextrins. Cellobiose is nonfermentable for most yeasts, and therefore it has to be hydrolyzed to glucose by beta-glucosidase prior to ethanol fermentation. In the present study, the beta-glucosidase production of one Penicillium and three Aspergillus strains, which were previously selected out of 24 strains, was investigated on steam pretreated willow. Both steam-pretreated willow and hemicellulose hydrolysate, released during steam explosion of willow, were used as carbon sources. Reference cultivation runs were performed using prehydrolyzed Solka Floc and glucose. The four strains were compared with Trichoderma reesei regarding sugar consumption and beta-glucosidase production. Aspergillus niger and Aspergillus phoenicis proved to be the best enzyme producers on hemicellulose hydrolysate. The maximum beta-glucosidase activity, 4.60 IU/mL, was obtained when A. phoenicis was cultivated on the mixture of hemicellulose hydrolysate and steam-pretreated willow. The maximum yield of enzyme activity, 502 IU/g total carbohydrate, was obtained when Aspergillus foetidus was cultivated on the hemicellulose hydrolysate.

5.
Appl Biochem Biotechnol ; 63-65: 351-62, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-18576094

RESUMO

The production cost of cellulolytic enzymes is a major contributor to the high cost of ethanol production from lignocellulosics using enzymatic hydrolysis. The aim of the present study was to investigate the cellulolytic enzyme production of Trichoderma reesei Rut C 30, which is known as a good cellulase secreting micro-organism, using willow as the carbon source. The willow, which is a fast-growing energy crop in Sweden, was impregnated with 1-4% SO2 and steam-pretreated for 5 min at 206 degrees C. The pretreated willow was washed and the wash water, which contains several soluble sugars from the hemicellulose, was supplemented with fibrous pretreated willow and used for enzyme production. In addition to sugars, the liquid contains degradation products such as acetic acid, furfural, and 5-hydroxy-methylfurfural, which are inhibitory for microorganisms. The results showed that 50% of the cellulose can be replaced with sugars from the wash water. The highest enzyme activity, 1.79 FPU/mL and yield, 133 FPU/g carbohydrate, was obtained at pH 6.0 using 20 g/L carbon source concentration. At lower pHs, a total lack of growth and enzyme production was observed, which probably could be explained by furfural inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...